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Dipartimento di Fisica Università di Camerino, 62032 Camerino, Italy

Received 14 April 2006 / Received in final form 16 June 2006
Published online 12 July 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The interaction of a five-level atomic system involving electromagnetically induced transparency
with four light fields is investigated. Two different light-atom configurations are considered, and their
efficiency in generating large nonlinear cross-phase shifts compared. The dispersive properties of those
schemes are analyzed in detail, and the conditions leading to group velocity matching for two of the light
fields are identified. An analytical treatment based on amplitude equations is used in order to obtain
approximate solutions for the susceptibilities, which are shown to fit well with the numerical solution of
the full Bloch equations in a large parameter region.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; elec-
tromagnetically induced transparency and absorption – 42.65.-k Nonlinear optics – 03.67.Hk Quantum
communication

1 Introduction

An efficient cross-phase modulation (XPM) in quantum
and semiclassical regimes is both interesting and useful in
many possible applications, such as those in optical com-
munications [1], optical Kerr shutters [2], quantum non-
demolition measurements [3] and quantum phase gates [4].
In all of these, but the last two especially, a large XPM is
desirable for low pump powers and high sensitivities.

In a standard three-level cascade scheme, shown in
Figure 1b, nonlinear effects are obtained alongside ab-
sorption, which increase as the fields are tuned closer to
the atomic transition [5]. To reduce the absorption to an
acceptable level, light fields need to be strongly detuned
from the intermediate atomic level |2〉, simultaneously re-
ducing however the size of the nonlinearity, since both are
inversely proportional to the square of the detuning.

Extensive studies aimed at avoiding this problem have
been performed in recent years. A promising candidate
emerged with the use of quantum coherence effects in
the interaction of light with multilevel atoms. Coherent
population trapping (CPT) [6] and in particular the re-
lated effect of electromagnetically induced transparency
(EIT) [7,8] have been studied theoretically [5,9,10] and
experimentally [3,11–13] in various energy-level schemes
based on a generic Λ-scheme (see Fig. 1a). At resonance
(δ1 = 0 in Fig. 1a), the presence of the coupling field
(with Rabi frequency Ω2) cancels, by destructive interfer-
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Fig. 1. (a) Three-level Λ–scheme for EIT. Transitions are
driven by the probe and coupling fields, with Rabi frequency
Ω1 and Ω2 respectively. When the probe detuning δ1 matches
the two photon Raman-resonance condition with the coupling
field, the atomic medium becomes transparent for the probe
field. (b) Three-level cascade configuration. To obtain signifi-
cant nonlinear effects for the probe field with Rabi frequency
Ω1, a large detuning δ1 from the intermediate level |2〉 is nec-
essary.

ence, the absorption on the probe transition (with Rabi
frequency Ω1), and renders the medium transparent for
the probe beam. A more general condition for EIT is two-
photon resonance, a condition that is satisfied when the
frequency difference between the fields matches the energy
gap between levels |1〉 and |3〉. However, on the exact EIT
resonance, probe field decouples from the atoms, making
the dynamics purely linear.
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Fig. 2. Asymmetric M scheme. The probe and the trigger
fields, with Rabi frequencies Ω1 and Ω3 respectively, together
with the stronger pump fields, the coupler and the tuner (with
Rabi frequencies Ω2 and Ω4, respectively) drive the corre-
sponding transitions. All the atoms are assumed to be in state
|1〉 and the detunings are defined in equations (3).

Optical nonlinearities in a multilevel atomic or molec-
ular system in the presence of EIT, usually arise by one of
the two following related mechanisms. One is to violate the
strict two-photon resonance condition, with a frequency
mismatch smaller than the width of the transparency win-
dow [3,14,15]. Alternatively, one can add additional en-
ergy level(s) in order to induce an ac-Stark shift and ef-
fectively tune the signal out of resonance [5,10,16]. Both
mechanisms result in large nonlinearities, accompanied by
very weak absorption. Recently, the so-called M -scheme,
shown in Figure 2, has been studied and proposed as a
promising source of giant nonlinearities that can be uti-
lized for XPM [14,17]. The double Λ nature of this M con-
figuration offers the opportunity of a simultaneous group
velocity reduction for pulses propagating inside the atomic
sample. Group velocity matching, originally pointed out
by Lukin and Imamoğlu [18], is important to obtain a large
XPM. In fact, it has been shown by Harris and Hau [10]
that if equal group velocity reduction is not achieved for
both fields, the nonlinear phase accumulation will satu-
rate at a certain constant value. The consequence is that
increasing the length of the sample in which the nonlinear
interaction takes place is not useful. On the other hand,
if group velocities are equal, the nonlinear phase accumu-
lation becomes linear in the interaction length [18] and it
may become very large.

A large cross Kerr phase shift is very useful for
photonic-based implementations of quantum information
(QI) processing systems [4,19]. In fact, a fundamental
building block for quantum information processing is the
quantum phase gate (QPG). In a QPG, one qubit gets a
phase conditional to the other qubit state according to the
transformation [4,20] |i〉1|j〉2 → exp {iφij} |i〉1|j〉2 where
{i, j} = 0, 1 denote the logical qubit bases. This gate is
universal when the conditional phase shift (CPS)

φ = φ11 + φ00 − φ10 − φ01, (1)

is nonzero, and it is equivalent to a CNOT gate up to local
unitary transformations when φ = π [4,20].

To obtain a CPS of φ = π, one looks for a strong
interaction between qubits, ideally accompanied by weak
decoherence. Photons are a particularly attractive choice
for qubits due to their robustness against decoherence dur-
ing the processing and transmission of information. This
feature should ideally permit the transmission of the quan-
tum information stored in very weak quantum pulses over
very long distances with a negligibly small reduction of
the initial signal. There is however an important difficulty
in the implementation of an all–optical–QPG: to process
the information one needs strong photon–photon interac-
tion. In fact, to implement QI with photons, a nonlinear
interaction is needed either to build a two-photon gate
operation [14,15,21,22] or at the detection stage in lin-
ear optics quantum computation [23]. It should also be
mentioned that the generation of single-photons (which is
also necessary in linear optics quantum computation) also
relies on nonlinear interactions.

In this paper we perform a semiclassical analysis of the
interaction of light with atoms in the M configuration, in
which the amplitude of the four fields involved is described
in terms of the corresponding Rabi frequency. The aim is
to estimate the effects of collisional dephasing and sponta-
neous emission, both on the nonlinear interaction and on
group velocity matching. The semiclassical regime offers
a clear picture of the physical aspects involved in EIT-
based nonlinear optics, and well describes a number of
recent experiments [13,24]. To this end we consider two
different configurations of atom-field interactions, which
we will call the asymmetric (see Fig. 2) and the symmet-
ric (see Fig. 10) M scheme. The paper is thus composed of
two main parts. In Section 2 we describe the physics of the
asymmetric M -scheme. We start by defining the system
and calculating the susceptibilities using an approximate
treatment employing amplitude equations. These analyt-
ical calculations are then compared with the results of
the numerical solution of the full system of Bloch equa-
tions. Finally, the conditions for group velocity matching
are analyzed. In Section 3 the physics of the symmetric
M -scheme is described by following the same order as in
Section 2. Conclusions are drawn in Section 4.

2 The asymmetric M scheme

2.1 The system

The M -system under consideration has a double adjacent
Λ structure as shown in Figure 2, where atoms with five
levels (three ground states |1〉, |3〉, |5〉, and two excited
states |2〉, |4〉) interact with four electromagnetic fields.
This configuration can be realized in Zeeman-splitted al-
kali atoms, such as 87Rb atoms. The Rabi frequencies as-
sociated with the lasers driving the atomic transitions are
defined as

Ωk = −µijEk

�
, (2)
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where Ek is the electric field amplitude, µij is the relative
dipole matrix elements induced on the transition |i〉 ↔ |j〉.
On transitions |3〉 ↔ |2〉 and |5〉 ↔ |4〉 we apply two strong
fields, the coupler Ω2 and the tuner Ω4 respectively. On
the transition |1〉 ↔ |2〉 a probe field is applied (with Ω1),
while on the transition |3〉 ↔ |4〉 a trigger field (with Ω3)
is applied. In this paper, we will analyze the XPM and
the group velocity matching between the probe and the
trigger fields. We call the scheme of Figure 2 the asym-
metric M scheme due to the asymmetric distribution of
the initial atomic population. All the atoms are in fact
assumed to be initially in state |1〉 so that they directly
feel the effect of the probe field only, while the effect of the
trigger field is only indirect. Due to this inherent asymme-
try, the dynamics experienced by probe and trigger fields
are always different, even when the corresponding param-
eters (Rabi frequencies, decay rates, detunings) are equal.
The symmetric version of this scheme will be analyzed in
Section 3.

The detunings δi (see Fig. 2) are defined as follows

E2 − E1 = �ω1 + �δ1 (3a)
E2 − E3 = �ω2 + �δ2 (3b)
E4 − E3 = �ω3 + �δ3 (3c)
E4 − E5 = �ω4 + �δ4, (3d)

where Ei, (i = 1, . . . , 5) is the energy of level |i〉, and ωi

is the frequency of the field with Rabi frequency Ωi.
The Hamiltonian of the system is

HA =
5∑

i

Ei|i〉〈i| + �
(
Ω1e

−iω1t|2〉〈1| +Ω2e
−iω2t|2〉〈3|

+ Ω3e
−iω3t|4〉〈3| +Ω4e

−iω4t|4〉〈5| + h.c.
)
, (4)

where h.c. denotes the Hermitian conjugate. Moving to
the interaction picture with respect to the following free
Hamiltonian

H0 = E1|1〉〈1| + (E2 − �δ1)|2〉〈2| + (E3 − �δ12)|3〉〈3|
+(E4 − �δ13)|4〉〈4| + (E5 − �δ14)|5〉〈5|, (5)

where

δ12 = δ1 − δ2, (6a)
δ13 = δ1 − δ2 + δ3, (6b)
δ14 = δ1 − δ2 + δ3 − δ4, (6c)

we get the following effective Hamiltonian

HAS
eff = �δ1|2〉〈2| + �δ12|3〉〈3| + �δ13|4〉〈4| + �δ14|5〉〈5|

+ �Ω1|2〉〈1| + �Ω2|2〉〈3| + �Ω3|4〉〈3| + �Ω4|4〉〈5|
+ �Ω�

1 |1〉〈2| + �Ω�
2 |3〉〈2| + �Ω�

3 |3〉〈4| + �Ω�
4 |5〉〈4|. (7)

2.2 Amplitude variables approach

We now study the dynamics driven by equation (7). How-
ever, we have to include the effects of spontaneous emis-

sion and dephasing, and we first treat them in a phe-
nomenological manner by including decay rates ΓAV

i for
each atomic level |i〉 in the equations for the amplitude
variables (AV) of the atomic wave-function. From an in-
tuitive point of view, for the excited levels |2〉 and |4〉 these
rates describe the total spontaneous decay rates, while for
the ground states the associated decay rates describe de-
phasing processes [8]. Therefore, the evolution equations
for the amplitudes bi(t) of the atomic state

|ψ(t)〉 =
5∑

i=1

bi(t)|i〉 (8)

become

ḃ1 = −Γ
AV
1

2
b1 − iΩ�

1b2, (9a)

ḃ2 = −
(
ΓAV

2

2
+ iδ1

)
b2 − iΩ1b1 − iΩ2b3, (9b)

ḃ3 = −
(
ΓAV

3

2
+ iδ12

)
b3 − iΩ�

2b2 − iΩ�
3b4, (9c)

ḃ4 = −
(
ΓAV

4

2
+ iδ13

)
b4 − iΩ3b3 − iΩ4b5, (9d)

ḃ5 = −
(
ΓAV

5

2
+ iδ14

)
b5 − iΩ�

4b4. (9e)

The system’s initial state is assumed to be the ground
state |1〉. Since an efficient XPM requires a dispersive
interaction, we tailor the dynamics in such a way that
this initial condition on the populations remains essen-
tially unaltered, even when the system reaches the steady-
state, i.e.,

bss
1 � 1. (10)

To this end we assume that the control field Ω2 is stronger
then the probe field Ω1, with the system being approxi-
mately on Raman resonance for the first and the second
Λ subsystems (δ1 ∼ δ2 and δ3 ∼ δ4), equations (9) are
then solved in the steady-state. In order to get a consis-
tent expression for the nonlinear susceptibilities one has
to consider higher order contributions to equation (10),
which is obtained by imposing the normalization of the
atomic wave-function of equation (8) at second order in
|Ω1/Ω2|. One gets the following expression for the steady
state amplitudes

bss
1 = 1 −

|Ω1|2
[
|d3|2 + |Ω2|2

]

2 |d2d3 − |Ω2|2|2
, (11a)

bss
2 = Ω1

d3

[|Ω4|2 − d4d5

]
+ |Ω3|2d5

Da
bss
1 (11b)

bss
3 = −Ω1Ω

�
2

|Ω4|2 − d4d5

Da
bss
1 (11c)

bss
4 = −Ω1Ω

�
2Ω3d5

Da
bss
1 (11d)

bss
5 =

Ω1Ω
�
2Ω3Ω

�
4

Da
bss
1 , (11e)
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χ
(3,sk)
P =

N |µ12|4
V �3ε0

− (
δ12 − iΓAV

3 /2
) [∣∣δ12 − iΓAV

3 /2
∣∣2 + |Ω2|2

]

[(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)− |Ω2|2

] ∣∣(δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

3 /2
) − |Ω2|2

∣∣2 , (17a)

χ
(3,ck)
P =

N |µ12|2|µ34|2
V �3ε0

|Ω2|2
(
δ14 − iΓAV

5 /2
)

[(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)− |Ω2|2

]2
[(
δ13 − iΓAV

4 /2
) (
δ14 − iΓAV

5 /2
)− |Ω4|2

] , (17b)

χ
(3,ck)
T =

N |µ12|2|µ34|2
V �3ε0

|Ω2|2
(
δ14 − iΓAV

5 /2
)

∣∣(δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

3 /2
)− |Ω2|2

∣∣2
[(
δ13 − iΓAV

4 /2
) (
δ14 − iΓAV

5 /2
) − |Ω4|2

] , (17c)

where we have defined

d2 = δ1 − ıΓAV
2 /2, (12a)

d3 = δ12 − ıΓAV
3 /2, (12b)

d4 = δ13 − ıΓAV
4 /2, (12c)

d5 = δ14 − ıΓAV
5 /2, (12d)

Da =
[
d2d3 − |Ω2|2

] [
d4d5 − |Ω4|2

] − d2d5|Ω3|2. (13)

These results can be used to determine the probe and
trigger susceptibilities, which are defined as

χP =
Nµ12

V ε0E1
bss
2 b

ss,�
1 = −N |µ12|2

V �ε0Ω1
bss
2 b

ss,�
1 , (14a)

χT =
Nµ34

V ε0E3
bss
4 b

ss,�
3 = −N |µ34|2

V �ε0Ω3
bss
4 b

ss,�
3 , (14b)

where N is the number of atoms interacting with the elec-
tromagnetic field, V is the volume occupied by the gas,
and ε0 is the vacuum dielectric constant. Doppler broad-
ening is neglected here. It is well-known that first order
Doppler effect can be cancelled by using co-propagating
laser fields [6]. In particular we emphasize that this is valid
for cold atomic media in a magneto-optical trap as well as
for a standard gas cell.

Inserting equations (11) into equations (14) and ex-
panding in series at the lowest orders in the probe and
trigger electric fields, E1 and E3 respectively, one gets

χP � χ
(1)
P + χ

(3,sk)
P |E1|2 + χ

(3,ck)
P |E3|2 (15a)

χT � χ
(3,ck)
T |E1|2, (15b)

where we have introduced the linear susceptibility
χ

(1)
P , the third-order self-Kerr susceptibility χ

(3,sk)
P and

the third-order cross-Kerr susceptibilities χ(3,ck)
P,T . Equa-

tions (15) clearly show the asymmetry of the scheme be-
tween the probe and trigger fields, with the latter pos-
sessing a nonzero cross-Kerr susceptibility only. This is a
consequence of the asymmetry of the population distri-
bution, which essentially remains in the ground state |1〉
all the time. This means that the trigger field drives a
virtually empty transition, hence the contribution to the
susceptibility comes only from higher order (see [15] for
discussion on the link between the population distribu-
tion and a linear contribution to susceptibility). It will be

shown in Section 3 that the symmetric M -scheme brings
about both a linear and a self-Kerr contribution to the
trigger susceptibility.

By using equations (11) and the definitions of equa-
tions (12) into equations (14), and comparing with equa-
tions (15) at the corresponding order in the electric fields,
one gets the explicit dependence of the linear and non-
linear susceptibilities as a function of the system parame-
ters, i.e.,

χ
(1)
P =

N |µ12|2
V �ε0

δ12 − iΓAV
3 /2(

δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

3 /2
) − |Ω2|2

(16)
for the probe linear susceptibility, and

see equations (17) above

for the third-order nonlinear susceptibilities. The two
cross-Kerr susceptibilities are identical whenever the
quantity

(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)−|Ω2|2 is (at least

approximately) real. This happens in the typical EIT sit-
uation we are considering in which |Ω2| is large enough. In
fact, when |Ω2|2 � ∣∣(δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)∣∣, one

has [14]

χ
(3,ck)
P = χ

(3,ck)
T =

N |µ12|2|µ34|2
V �3ε0

× δ14 − iΓAV
5 /2

|Ω2|2
[(
δ13 − iΓAV

4 /2
) (
δ14 − iΓAV

5 /2
) − |Ω4|2

] .

(18)

We shall see in the next subsection that these approximate
expressions for the nonlinear susceptibilities fit very well
with the numerical solution of the exact dynamics of the
system.

The asymmetric M -scheme can be seen as an exten-
sion of the four level N -scheme introduced in reference [5],
with the addition of the coupling to an additional level
|5〉 provided by the tuner field with Rabi frequency Ω4.
In fact, it is easy to check that upon setting Ω4 = 0
in equation (17b), one recovers the third-order nonlinear
susceptibility of the four-level N -scheme derived in refer-
ences [5,13]. As we will see below, the role of the tuner
field is to enable a fine tuning of the group velocities, in
order to achieve group velocity matching between probe
and trigger [14,16,18].
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2.3 Comparison with the optical Bloch equations

We now study the dynamics of the asymmetric M scheme
of Figure 2 by means of the optical Bloch equations
(OBE), which allow to describe spontaneous emission and
dephasing rigorously and no more phenomenologically as
in the AV treatment presented in the preceding subsec-
tion. We consider six spontaneous decay channels, i.e.,
the decay of the excited state |2〉 onto the three ground
state sublevels |1〉, |3〉, and |5〉 with rates Γ21, Γ23 and Γ25

respectively, and the corresponding decay of the excited
state |4〉 onto the three sublevels |1〉, |3〉, and |5〉 with
rates Γ41, Γ43 and Γ45 respectively. Moreover we consider
dephasing of the each level |i〉 with dephasing rate γii, so
that the master equation for the atomic density operator
ρ is given by

ρ̇ = − i

�

[
HAS

eff , ρ
]

+
∑

l=2,4

∑

k=1,3,5

Γlk

2

(
2σ̂klρσ̂

†
kl − σ̂†

klσ̂klρ− ρσ̂†
klσ̂kl

)

+
5∑

k=1

γkk

2
(2σ̂kkρσ̂kk − σ̂kkρ− ρσ̂kk) , (19)

where HAS
eff is given by equation (7) and σ̂kl = |k〉〈l|.

The corresponding system of OBE’s for the mean values
σij(t) ≡ 〈σ̂ij(t)〉 ≡ ρji(t) is displayed in Appendix A as
equations (A.1) and (A.2), where we have defined for con-
venience the total decay rates

Γ2 = Γ21 + Γ23 + Γ25, (20)
Γ4 = Γ41 + Γ43 + Γ45, (21)

and the composite dephasing rates

γij = γii + γjj , i = 1 . . . 5. (22)

The OBE for the M scheme are quite involved and less
suited for an approximate analytical treatment with re-
spect to the AV equations of the preceding subsection. In
fact, if we consider again the condition |Ω1/Ω2| 	 1 and,
consistently with equation (10), we assume that

σ11 ≈ 1, (23a)
σjj ≈ 0, j = 2, . . . , 5, (23b)

at the steady state, it is possible to see that by inserting
equations (23) into equations (A.2) for the coherences, one
gets a satisfactory expression for the probe linear suscep-
tibility only. To be more specific, only the approximate
linear susceptibility fits well with the numerical solution
of the OBE, while it turns out to be extremely difficult
to derive analytical expressions from equations (A.1) and
(A.2) for the nonlinear susceptibilities, as simple as those
of equations (17), and which reproduce in the same way
the exact numerical solution in the EIT regime we are
studying. Obviously, one can exactly solve analytically
the OBE, but the resulting expressions are very cumber-
some and not physically transparent such as those of equa-
tions (17). For this reason we will analytically derive from

the OBE the probe linear susceptibility only, and we will
then use the OBE only for the numerical determination of
the atomic steady state. Additionally, deriving this result
will enable us to draw a formal analogy between the AV
and OBE treatments (see Eqs. (26) below).

The probe susceptibility is defined in terms of the
atomic coherence σ12 as (see also Eq. (14a))

χP =
Nµ12

V ε0E1
σ12 = −N |µ12|2

V �ε0Ω1
σ12. (24)

Using equations (23) and performing a series expansion at
the lowest order in the probe and trigger fields, we arrive
at an approximate solution for σ12, which, inserted into
equation (24), gives the following expression for the probe
linear susceptibility

χ
(1)
P =

N |µ12|2
V �ε0

δ12 − iγ13/2
[δ12 − iγ13/2] [δ1 − i (Γ2 + γ12) /2]− |Ω2|2 .

(25)
By comparing equation (25) with equation (16), one can
immediately see that the AV and OBE predictions for the
probe linear susceptibility coincide provided that the phe-
nomenological decay rates ΓAV

i are appropriately inter-
preted, i.e.,

ΓAV
2 ↔ Γ2 + γ12, (26a)

ΓAV
3 ↔ γ13. (26b)

This comparison shows therefore that the AV approach
provides a treatment of the atomic dynamics simpler than
the OBE’s approach, but roughly equivalent, and that
the intuitive interpretation of its phenomenological decay
rates ΓAV

i as spontaneous emission total decay rates for
the excited states, and as dephasing rates in the case of
ground state sublevels, is essentially correct, especially in
the typical case in which dephasing rates are much smaller
than spontaneous emission decay rates (see Eqs. (26)).

We then consider the numerical solution of the OBE
and we compare it with the analytical treatment based
on the AV approach presented above. The numerical cal-
culations are performed in the range of parameters cor-
responding to EIT, i.e., |Ω1|, |Ω2| 	 |Ω3|, |Ω4| and we
stay near two-photon resonance for both the probe and
the trigger field. In Figures 3–6 we compare the analyti-
cal solutions of equation (16) and equations (17) with the
numerical solution of the complete set of Bloch equations
given in the Appendix A. From these plots it is evident
that our analytical treatment works satisfactorily well, ex-
cept for a small interval of values of the detuning, corre-
sponding to the maximum probe (or trigger) absorption.
In such a case, the detunings match the Rabi frequencies
of the two pumps, and the probe (or trigger) field is in
resonance with a single atomic transition. The atoms are
significantly pumped to the excited levels and the popu-
lation assumption of equation (10) is not fulfilled. In fact,
the discrepancy between the exact numerical solution of
the OBE and the AV approach is strictly related to the
atomic population out of level |1〉 which, in the case of
Figure 3, is about 14% of the total population. Finally,
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Fig. 3. Comparison of the numerical solution (dotted line)
of the OBE with the analytical prediction of equation (16)
(full line) for the real part (above) and imaginary part (below)
of the linear probe susceptibility versus the normalized probe
detuning δ1/Γ4. The parameter used are the following: Γ AV

2 =
Γ2 = 36 MHz, Γ AV

4 = Γ4 = 38 MHz, δ2 = δ3 = δ4 = 0,
∀i, j γij = Γ AV

3 = Γ AV
5 = 10−4Γ4, Ω1 = 0.08Γ4, Ω2 = 2Γ4,

Ω3 = 0.04Γ4, Ω4 = Γ4.
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Fig. 4. Comparison of the numerical solution (dotted line)
of the OBE with the analytical prediction of equation (17b)
(full line) for the real part (above) and imaginary part (be-
low) of the probe cross-Kerr susceptibility versus the normal-
ized probe detuning δ1/Γ4. To reduce as much as possible the
influence of the self-Kerr susceptibility we have considered a
probe Rabi frequency Ω1 much smaller than that of the trigger
field. Parameters are: Γ AV

2 = Γ2 = 36 MHz, Γ AV
4 = Γ4 = 38

MHz, δ2 = δ3 = δ4 = 0, ∀i, j γij = Γ AV
3 = Γ AV

5 = 10−4Γ4,
Ω1 = 0.004Γ4 , Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4.

it should be mentioned that the success of the AV equa-
tion in describing the response of the atomic medium also
significantly owes to the fact that in all cases of inter-
est considered in this paper, the normalized equation is a
very good approximation to the adiabatic condition (10).
In other word, a very limited fraction of population ever
appears in the excited states.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

x 10
−7

δ
1
/Γ

4

R
e{

χ S
−

K
(3

)
} 

(a
rb

itr
ar

y 
un

its
)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

0
2
4
6
8

10
12
14

x 10
−7

δ
1
/Γ

4

Im
{χ

S
−

K
(3

)
} 

(a
rb

itr
ar

y 
un

its
)

Numerical
Analytical

Numerical
Analytical

Fig. 5. Comparison of the numerical solution (dotted line) of
the OBE with the analytical prediction of equation (17a) (full
line) for the real part (above) and imaginary part (below) of
the probe self-Kerr susceptibility versus the normalized probe
detuning δ1/Γ4. To reduce as much as possible the influence
of the cross-Kerr susceptibility we have considered a trigger
Rabi frequency Ω3 much smaller than that of the probe field.
Parameters are: Γ AV

2 = Γ2 = 36 MHz, Γ AV
4 = Γ4 = 38 MHz,

δ2 = δ3 = δ4 = 0, ∀i, j γij = Γ AV
3 = Γ AV

5 = 10−4Γ4, Ω1 =
0.5Γ4, Ω2 = 2Γ4, Ω3 = 0.005Γ4 , Ω4 = Γ4.
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Fig. 6. Comparison of the numerical solution (dotted line) of
the OBE with the analytical prediction of equation (17c) (full
line) for the real part (above) and imaginary part (below) of the
trigger cross-Kerr susceptibility as a function of the normalized
trigger’s detuning δ3/Γ4. Parameters are similar to those of
Figure 3, Γ AV

2 = Γ2 = 36 MHz, Γ AV
4 = Γ4 = 38 MHz, δ1 =

δ2 = δ4 = 0, ∀i, j γij = Γ AV
3 = Γ AV

5 = 10−4Γ4, Ω1 = 0.08Γ4,
Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4.

Figures 3–6 refer to a situation with small dephasing
rates (∀i, j, γij = ΓAV

3 = ΓAV
5 = 10−4Γ4 ∼ few kHz)

which are typical for not too dense gases. For larger val-
ues of the dephasing rates (some tens of kHz), we have
seen that the analytical prediction of the AV approach of
the preceding subsection starts to depart from the exact
solution of the OBE.
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2.4 Group velocity matching

The propagation equation for the slowly varying electric
field amplitudes εi(z, t), i = P, T , defined as

Ei(z, t) = εi(z, t) exp {ikiz − iωit} + c.c. i = P, T,

is given by
(
∂

∂z
+

1
vi

g

∂

∂t

)
εi(z, t) = i

ki

2
χi(z, t)εi(z, t), i = P, T,

(27)
where vi

g is the group velocity, generally defined as vi
g =

c/(1 + ni
g), with c the speed of light in vacuum and

ni
g =

1
2
Re[χi] +

ωi

2

(
∂Re[χi]
∂ω

)

ωi

(28)

the group index, ωi being the frequency of field i. The
solution of equation (27) is

εi(z, t) = εi(0, t− z

vi
g

) exp
{
i
ki

2

∫ z

0

dz′χi(z′, t)
}
, (29)

so that, using equations (15), the nonlinear cross-phase
shift for the two fields of interest is given by

φck
P =

ω1

2c

∫ l

0

dzRe[χ3,ck
P ] |εT (z, t)|2 , (30a)

φck
T =

ω3

2c

∫ l

0

dzRe[χ3,ck
T ] |εP (z, t)|2 , (30b)

where l is the length of the atomic medium. These non-
linear cross-phase shifts are of fundamental importance
also for quantum information processing applications. In
fact, the CPS of equation (1) is determined only by these
cross-Kerr contributions to the total phase shift, because
the linear and self-Kerr contributions cancel out, as shown
in references [14,15].

For Gaussian probe and trigger pulses of time dura-
tions τP and τT , and with peak Rabi frequencies Ωpeak

P

and Ωpeak
T respectively, the nonlinear cross-phase shifts

can be written as (see also Refs. [14,15])

φck
P =

ω1l

4c

√
π�

2|Ωpeak
T |2

|µ34|2
erf[ζP]
ζP

Re[χ3,ck
P ], (31a)

φck
T =

ω3l

4c

√
π�

2|Ωpeak
P |2

|µ12|2
erf[ζT]
ζT

Re[χ3,ck
T ], (31b)

where ζP = (1−vP
g /v

T
g )

√
2l/vP

g τT and ζT is obtained from
ζP upon interchanging the indices P ↔ T . Large nonlinear
cross-phase shifts take place for appreciably large values
of the two cross-Kerr susceptibilities real parts, and es-
pecially when probe and trigger velocities become equal,
i.e., when ζP,T → 0, in which case the erf[ζ]/ζ reaches
the maximum value 2/

√
π. In this limit the cross-phase

phase shifts linearly increase with the length of the atomic
medium l. This explains why achieving group velocity

matching, vP
g = vT

g , is of fundamental importance. More-
over group velocities become small for large group indices
and this condition can be achieved within the EIT trans-
parency window, where Re[χ] vanishes, and the group ve-
locity is strongly reduced due to a large dispersion gradi-
ent ∂Re[χ]/∂ω.

Let us see how small and equal probe and trigger
group velocities can be obtained. We consider the approxi-
mate analytical expressions for the susceptibilities of equa-
tions (15–17) derived above within the AV approach, and
which we have seen to work very well in the EIT regime.
Assuming to stay at the center of the transparency win-
dow for the probe (δ12 = 0) where the dispersion gradi-
ent is maximum, and neglecting dephasing rates ΓAV

3 and
ΓAV

5 , which are typically much smaller than all the other
parameters, one gets

nP
g � N

V

|µ12|2ω1

2�ε0|Ω2|2 (1 + |Ω3|2β), (32a)

nT
g � N

V

|µ34|2ω3

2�ε0|Ω2|2 |Ω1|2β, (32b)

where [14]

β =

(
δ214 + |Ω4|2

) [(
δ13δ14 − |Ω4|2

)2 − δ214
(
ΓAV

4 /2
)2

]

[
(δ13δ14 − |Ω4|2)2 + δ214

(
ΓAV

4 /2
)2

]2 .

(33)
In the EIT situation we are considering it is nP

g , n
T
g � 1,

so that, using equations (32),

vP
g � c

nP
g

� 2�ε0c|Ω2|2
(N/V )|µ12|2ω1(1 + |Ω3|2β)

, (34a)

vT
g � c

nT
g

� 2�ε0c|Ω2|2
(N/V )|µ34|2ω3|Ω1|2β . (34b)

As expected, the asymmetric M -scheme does not yield
equal slow down of both trigger and probe pulse auto-
matically as, for example, the scheme of Petrosyan and
Kurizki [16] does. In fact, the two expressions of the
group velocities are generally different. Nonetheless, equa-
tions (34) show that group velocity matching is always
achievable by properly adjusting the parameter β, which
means adjusting the tuner intensity |Ω4|2 and the com-
posite detuning δ14. This shows that the present asym-
metric M -scheme can be seen as a modified version of the
N -scheme of reference [5], in which the tuner pump field
is added just in order to “tune” the group velocity of the
trigger pulse so to make it equal to that of the probe. The
possibility to achieve group velocity matching is shown in
Figure 7, where both the numerical result derived from the
OBE and the approximate analytical expressions of equa-
tions (34) are plotted versus the trigger detuning δ3. Two
different values of δ3 exist for which vP

g = vT
g � 1000 m/s

(see Fig. 7). Parameter values here correspond to typical
values for a cell of 87Rb atoms, i.e., ΓAV

2 = Γ2 � 36 MHz,
ΓAV

4 = Γ4 � 38 MHz, N/V � 3×1013 cm−3, δ1 = δ2 = 0,
δ4 � δ3 � 20Γ4, Ω1 = 0.08Γ4, Ω2 = 2Γ4, Ω3 = 0.04Γ4,
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Fig. 7. Group velocity of the probe and trigger pulses versus
the normalized trigger detuning δ3/Γ4. Full lines denote the
analytical predictions of equations (34) (the thick line refers to
the probe and the thin line to the trigger). Circles and dots
refer to the numerical solution of the OBE for the probe and
trigger group velocity, respectively. This figure shows how it is
possible to obtain group velocity matching in the asymmetric
M -scheme: two different values of δ3 exist for which vP

g = vT
g �

1000 m/s. The parameters are those of the D1 and D2 line
in the 87Rb spectrum: Γ AV

2 = Γ2 � 36 MHz, Γ AV
4 = Γ4 �

38 MHz, δ1 = δ2 = 0, δ4 � δ3 � 20Γ4, Ω1 = 0.08Γ4, Ω2 = 2Γ4,
Ω3 = 0.04Γ4, Ω4 = Γ4, ∀i, j, γij = Γ AV

3 = Γ AV
5 = 10−4Γ4,

N/V = 3.0 × 1013 cm−3.

Fig. 8. (Color online) Propagation of probe
and trigger pulses through the asymmetric M
medium. Pulses are taken to be Gaussian at
time t = 0 and are sufficiently long (τi >
1/∆ωi

tr), i = P, T . Units are arbitrary, with
c = 1.

Ω4 = Γ4, ∀i, j, γij = ΓAV
3 = ΓAV

5 = 10−4Γ4. Moreover
Figure 7 clearly shows that the simple expressions of equa-
tions (34) well reproduce the exact numerical solution of
the OBE.

2.5 Pulse propagation

In previous section, we have addressed the problem of
group velocity matching between probe and trigger fields
in the asymmetric M-scheme. It should be emphasized
that the analysis and the results presented there are
strictly valid for the continuous-wave (cw) fields. We
would now address that same problem but with the pulsed
probe and trigger fields in mind. At the first look, equa-
tions (34) appear to suggest that the group velocity
matching would not be possible in the pulsed regime. As
the group velocity of the trigger pulse is inversely pro-
portional to the square of the probe pulse, trigger suf-
fers anomalous dispersion, i.e. in the presence of a pulsed
probe, the trigger pulse will get distorted, splitting into
several components, each having a different group velocity.

It will be shown in this Section that the above con-
clusion is an artifact of approximations made to obtain
a closed and compact expression for group velocities. In
particular, the pulse propagation in this approximation is
described by equations (27), with group velocities vi

g given
by equations (34) and nonlinear susceptibilities χi being

those of equations (17). This is equivalent to the adia-
batic elimination of the atomic degrees of freedom. Such
adiabatic elimination, strictly speaking, is not valid in the
parameter regime explored in this paper: strong nonlin-
ear interaction between probe and trigger pulses suggests
that the contribution of the atomic medium is far from be-
ing adiabatic. Also, it should be noted that the dephasing
processes have been neglected in the derivation of vi

g. For
the adiabatic case, the above conclusion is correct: the
trigger pulse suffers anomalous dispersion and its group
velocity becomes singular towards the edges of a probe
pulse. However, pulse propagation through the asymmet-
ric M -system do not follow such a simple approximate
evolution. Full propagation problem must then be solved
which includes adding the time-dependent equations for
the pulses

(
∂

∂z
+

1
c

∂

∂t

)
εi(z, t) = i

ki

2
Nµi

V ε0
σi(z, t), i = P, T, (35)

to the OBEs [Eqs. (A.1, A.2)], and numerically solving the
resulting system of equations. In the above equation, it is
understood that σP = σ12 and σT = σ34 in the notation
of equations (A.2).

Results are shown in Figures 8 and 9 for the same
set of parameters that yields group velocities matching in
Figure 7. Vertical axes have been scaled appropriately to
obtain Rabi frequencies Ωi. Two operating regimes could
be identified, long-pulse regime and short-pulse regime,
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Fig. 9. (Color online) Propagation of probe
and trigger pulses through the asymmetric M
medium. Pulses are taken to be Gaussian at
time t = 0 and short (τi < 1/∆ωi

tr), i = P, T .
Units are arbitrary, with c = 1.

where ‘long’ and ‘short’ denotes the pulses’ length in time.
This length is compared to the inverse width of the trans-
parency window. Long pulses fit well into the transparency
window, while short pulses do not. Figure 8 shows the re-
sults of our simulation for the initially identical long Gaus-
sian pulses. It is clear that the pulses propagate undis-
torted with the equal group velocities. Tiny amplitude
decay is present due to the small imaginary part of the
nonlinear susceptibility.

Short pulses (Fig. 9) however, show distortion. Probe
pulse distortion comes from the absorption, as the pulse
spreads outside of the transparency window. Trigger pulse
shows the same absorption effect, but moreover it also
splits into several components which then continue to
propagate with a different group velocities each. Note that
the singularity present in the adiabatic approach is not
present here. This is due to the fact that the dephasing,
neglected in the adiabatic treatment, effectively regular-
izes the equations, removing the singularity.

It is also noted that in the long-pulse regime, both of
the pulses propagate virtually undistorted, with a group
velocity uniform across each of the pulses. Our simulations
suggest that the approximate equations (34) are valid, as
long as the Rabi frequencies there are considered to be
taken at the peak of the pulse, i.e. Ωi → Ωpeak

i .

3 The symmetric M–scheme

In this section we analyze the symmetric M–scheme,
schematically shown in Figure 10. The initial conditions
and the configuration of the fields are slightly different
from those of the asymmetric case of Section 2. The same
five levels could be used, but all the atoms are now initially
prepared in level |3〉 (see Fig. 10). Moreover, the role of
the probe and of the coupler fields are exchanged, i.e., now
the probe field (still with Rabi frequency Ω1 and central
frequency ω1) couples levels |2〉 and |3〉, while the coupler
(still with Rabi frequency Ω2 and central frequency ω2)
induces transitions between levels |1〉 and |2〉. The role
of trigger and tuner fields remains unchanged. In such a
way, the scheme becomes symmetric for probe and trigger,
and the two fields experience exactly the same dynamics
whenever the corresponding parameters are made equal,
i.e., when the Rabi frequencies are correspondingly equal
(Ω1 = Ω3, Ω2 = Ω4), as well as the detunings, (δ1 = δ3,
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���
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���
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Fig. 10. Symmetric M scheme. The probe and the trigger
fields, with Rabi frequencies Ω1 and Ω3 respectively, together
with the stronger pump fields, the coupler and the tuner (with
Rabi frequencies Ω2 and Ω4, respectively) drive the corre-
sponding transitions. All the atoms are assumed to be in state
|3〉 and the detunings are defined in equations (36).

δ2 = δ4), which are now defined similarly to those of the
asymmetric M scheme (see Eqs. (3)) except for probe-
coupler exchange, i.e.,

E2 − E1 = �ω2 + �δ2, (36a)
E2 − E3 = �ω1 + �δ1, (36b)
E4 − E3 = �ω3 + �δ3, (36c)
E4 − E5 = �ω4 + �δ4. (36d)

In this way, the scheme can be seen again as formed by
two adjacent Λ, one for the probe and one for the trigger,
now however symmetrically placed with respect to state
|3〉. As we have done for the asymmetric M scheme, we as-
sume to stay close to the two-photon resonance conditions,
δ1 � δ2 and δ3 � δ4, and moreover that |Ω1| 	 |Ω2|, and
|Ω3| 	 |Ω4|, so that both probe and trigger will experi-
ence EIT. As we have seen above, a large XPM is obtained
when the group velocities are equal [10,14–16,18,22], and
the advantage of the present symmetric M–scheme is that
group velocity matching is automatically achieved once
that the scheme is exactly symmetric between probe and
trigger.
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The Hamiltonian of the system is

HS =
5∑

i

Ei|i〉〈i| + �
(
Ω1e

−iω1t|2〉〈3| +Ω2e
−iω2t|2〉〈1|

+ Ω3e
−iω3t|4〉〈3| +Ω4e

−iω4t|4〉〈5| + h.c.
)
. (37)

Moving to the interaction picture with respect to the fol-
lowing free Hamiltonian

H ′
0 = E3|3〉〈3| + (E2 − �δ1)|2〉〈2| + (E1 − �δ12)|1〉〈1|

+(E4 − �δ3)|4〉〈4| + (E5 − �δ34)|5〉〈5|, (38)

where

δ12 = δ1 − δ2, (39a)
δ34 = δ3 − δ4, (39b)

we get the following effective Hamiltonian

HS
eff = �δ1|2〉〈2| + �δ12|1〉〈1| + �δ3|4〉〈4| + �δ34|5〉〈5|

+ �Ω1|2〉〈3| + �Ω2|2〉〈1| + �Ω3|4〉〈3| + �Ω4|4〉〈5|
+ �Ω�

1 |3〉〈2| + �Ω�
2 |1〉〈2| + �Ω�

3 |3〉〈4| + �Ω�
4 |5〉〈4|. (40)

3.1 Amplitude variables approach

We first study the system dynamics by means of the AV
approach, in which the state of the atom is described by
the wave-function of equation (8), whose time evolution is
determined by the Hamiltonian of equation (40), supple-
mented with phenomenological decay rates ΓAV

i for each
atomic level |i〉. The corresponding evolution equations for
the amplitudes bi(t) are

ḃ1(t) = −ıd1b1(t) − ıΩ�
2b2(t), (41a)

ḃ2(t) = −ıd2b2(t) − ıΩ2b1(t) − ıΩ1b3(t), (41b)

ḃ3(t) = −ıd3b3 − ıΩ�
1b2(t) − ıΩ�

3b4(t), (41c)

ḃ4(t) = −ıd4b4(t) − ıΩ3b3(t) − ıΩ4b5(t), (41d)

ḃ5(t) = −ıd5b5(t) − ıΩ�
4b4(t), (41e)

where, similarly to what we have done for the asymmetric
case, we have defined

d1 = δ12 − ıΓAV
1 /2, (42a)

d2 = δ1 − ıΓAV
2 /2, (42b)

d3 = −ıΓAV
3 /2, (42c)

d4 = δ3 − ıΓAV
4 /2, (42d)

d5 = δ34 − ıΓAV
5 /2. (42e)

Since we choose again |Ω1/Ω2| 	 1 and |Ω3/Ω4| 	 1, it is
reasonable to assume that the atomic population remains
in the initial state |3〉 to a good approximation

bss
3 ∼ 1. (43)

The set of equations (41) is then solved in the steady-state.
In order to get a consistent expression for the nonlinear
susceptibilities one has to consider higher order contribu-
tions to equation (43), which is obtained by imposing the
normalization of the atomic wave-function of equation (8)
at second order in |Ω1/Ω2| and |Ω3/Ω4|. One gets the
following expression for the steady state amplitudes

bss
3 = 1 −

|Ω1|2
[
|d1|2 + |Ω2|2

]

2 |d1d2 − |Ω2|2|2

−
|Ω3|2

[
|d5|2 + |Ω4|2

]

2 |d4d5 − |Ω4|2|2
, (44a)

bss
2 = − Ω1d1

d1d2 − |Ω2|2 b
ss
3 , (44b)

bss
4 = − Ω3d5

d5d4 − |Ω4|2 b
ss
3 , (44c)

bss
1 =

Ω1Ω
�
2

d1d2 − |Ω2|2 b
ss
3 , (44d)

bss
5 =

Ω3Ω
�
4

d5d4 − |Ω4|2 b
ss
3 . (44e)

These results can be used to determine the probe and
trigger susceptibilities, which are now defined as (see
Eqs. (14))

χP =
Nµ32

V ε0E1
bss
2 b

ss,�
3 = −N |µ32|2

V �ε0Ω1
bss
2 b

ss,�
3 , (45a)

χT =
Nµ34

V ε0E3
bss
4 b

ss,�
3 = −N |µ34|2

V �ε0Ω3
bss
4 b

ss,�
3 . (45b)

Inserting equations (44) into equations (45) and expand-
ing in series at the lowest orders in the probe and trigger
electric fields, E1 and E3 respectively, one gets

χP � χ
(1)
P + χ

(3,sk)
P |E1|2 + χ

(3,ck)
P |E3|2, (46a)

χT � χ
(1)
T + χ

(3,sk)
T |E3|2 + χ

(3,ck)
T |E1|2, (46b)

where we have again distinguished the third-order self-
Kerr susceptibilities χ

(3,sk)
P,T from the third-order cross-

Kerr susceptibilities χ(3,ck)
P,T . Using equations (44) and the

definitions of equations (42), we get the following expres-
sions for the linear susceptibilities,

χ
(1)
P =

N |µ32|2
V �ε0

δ12 − iΓAV
1 /2(

δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

1 /2
) − |Ω2|2

(47a)

χ
(1)
T =

N |µ34|2
V �ε0

δ34 − iΓAV
5 /2(

δ3 − iΓAV
4 /2

) (
δ34 − iΓAV

5 /2
) − |Ω4|2

(47b)
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χ
(3,sk)
P =

N |µ32|4
V �3ε0

− (
δ12 − iΓAV

1 /2
) [∣∣δ12 − iΓAV

1 /2
∣∣2 + |Ω2|2

]

[(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

1 /2
) − |Ω2|2

] ∣∣(δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

1 /2
) − |Ω2|2

∣∣2 , (48a)

χ
(3,sk)
T =

N |µ34|4
V �3ε0

− (
δ34 − iΓAV

5 /2
) [∣∣δ34 − iΓAV

5 /2
∣∣2 + |Ω4|2

]

[(
δ3 − iΓAV

4 /2
) (
δ34 − iΓAV

5 /2
) − |Ω4|2

] ∣∣(δ3 − iΓAV
4 /2

) (
δ34 − iΓAV

5 /2
) − |Ω4|2

∣∣2 , (48b)

χ
(3,ck)
P =

N |µ32|2|µ34|2
V �3ε0

− (
δ12 − iΓAV

1 /2
) [∣∣δ34 − iΓAV

5 /2
∣∣2 + |Ω4|2

]

[(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

1 /2
)− |Ω2|2

] ∣∣(δ3 − iΓAV
4 /2

) (
δ34 − iΓAV

5 /2
) − |Ω4|2

∣∣2 , (48c)

χ
(3,ck)
T =

N |µ32|2|µ34|2
V �3ε0

− (
δ34 − iΓAV

5 /2
) [∣∣δ12 − iΓAV

1 /2
∣∣2 + |Ω2|2

]

[(
δ3 − iΓAV

4 /2
) (
δ34 − iΓAV

5 /2
)− |Ω4|2

] ∣∣(δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

1 /2
) − |Ω2|2

∣∣2 . (48d)

and the following ones for the nonlinear susceptibilities,

see equations (48) above.

First of all we note that the expressions of the probe and
trigger susceptibilities above are completely symmetric.
This means that probe and trigger experience the same
linear and Kerr susceptibilities, as soon as the correspond-
ing parameters correspond, i.e., µ32 = µ34, Ω1 = Ω3,
Ω2 = Ω4, δ1 = δ3, δ2 = δ4, ΓAV

1 = ΓAV
5 , ΓAV

2 = ΓAV
4 .

Moreover, the probe linear susceptibility of equation (47a)
and the self-Kerr susceptibility of equation (48a) coincide
with the corresponding ones of the asymmetric case, equa-
tions (16) and (17a) respectively, because the phenomeno-
logical decay rate ΓAV

1 here plays just the same role of
the phenomenological decay rate ΓAV

3 of the asymmetric
scheme. This is not surprising, since the probe response
in the absence of the trigger field is the same in the two
M scheme studied here. Finally the cross-Kerr susceptibil-
ities of the two schemes are generally different, both for the
probe and the trigger, even though they possess a similar
structure. The main relevant difference between the two
cross-Kerr susceptibilities is in the dependence of their
real parts upon the detunings. In fact, in the asymmetric
case both real parts are proportional to the composite de-
tuning δ14 = δ12 + δ34 (see Eqs. (6) and (39)), so that one
has a nonzero XPM as soon as one of the two Λ subsys-
tem is shifted from the two-photon resonance condition.
In the symmetric case instead, Re{χ(3,ck)

P } is proportional
to δ12 and Re{χ(3,ck)

T } is proportional to δ34, and the two-
photon resonance condition has to be violated by both Λ
subsystems if each field has to experience a nonzero XPM.

3.2 Comparison with the optical Bloch equations

We now study the dynamics of the symmetric M scheme
of Figure 10 by means of the OBE, which allow to de-
scribe spontaneous emission and dephasing more rigor-
ously. Due to the similarity of the symmetric and asym-
metric M schemes, we consider the same spontaneous
emission and dephasing processes described in Section 2.3.
As a consequence, the master equation for the atomic
density operator ρ is again given by equation (19), with

the only difference that the Hamiltonian HAS
eff is replaced

by the corresponding Hamiltonian HS
eff of the symmetric

scheme, given by equation (40). The corresponding system
of OBE’s for the mean values σij(t) ≡ 〈σ̂ij(t)〉 ≡ ρji(t) is
displayed in Appendix B as equations (B.1) and (B.2),
where we have used the definitions of equations (20–22).
Comparison proceeds following the same logic as used in
Section 2.

Also in this symmetric case, the OBE are less suited
for an approximate analytical treatment with respect to
the AV equations of the preceding subsection. In fact, if
we consider the conditions |Ω1/Ω2| 	 1 and |Ω3/Ω4| 	 1
and, consistently with equation (43), we assume that

σ33 ≈ 1, (49a)
σjj ≈ 0, j = 1, 2, 4, 5, (49b)

at the steady state, it is possible to see that by inserting
equations (23) into equations (B.2) for the coherences, one
gets a satisfactory expression for the probe linear suscep-
tibility only. To be more specific, only the approximate
linear susceptibility fits well with the numerical solution
of the OBE. It is not easy to derive analytical expressions
from equations (B.1) and (B.2) for the nonlinear suscepti-
bilities which would be as simple as those of equations (48)
and which would reproduce in the same way the exact
numerical solution of the OBE within the EIT regime.
Again, one could exactly solve analytically the OBE, but
the resulting expressions are very cumbersome and not
physically transparent as those of equations (48). For this
reason we will analytically derive from the OBE the probe
linear susceptibility only, and we will then use the OBE
only for the numerical determination of the atomic steady
state. In addition, deriving this result will enable us to
draw a formal analogy between the AV and OBE treat-
ments (see Eqs. (52) below).

The probe and trigger susceptibilities are now de-
fined as

χP =
Nµ32

V ε0E1
σ32 = −N |µ32|2

V �ε0Ω1
σ32, (50a)

χT =
Nµ34

V ε0E3
σ34 = −N |µ34|2

V �ε0Ω3
σ34. (50b)
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Using equations (49) and performing a series expansion at
the lowest order in the probe and trigger fields, we arrive at
the following expressions for the probe and trigger linear
susceptibilities

χ
(1)
P =

N |µ32|2
V �ε0

δ12 − iγ13/2
[δ12 − iγ13/2] [δ1 − i (Γ2 + γ12) /2]−|Ω2|2 ,

(51a)

χ
(1)
T =

N |µ34|2
V �ε0

δ34 − iγ53/2
[δ34 − iγ53/2] [δ3 − i (Γ4 + γ54) /2]−|Ω4|2 .

(51b)

Due to the symmetry of the scheme, the probe linear
susceptibility coincides with that of the trigger of equa-
tion (51b) when the corresponding parameters coincide,
i.e., µ32 = µ34, δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4,
γ54 = γ12 and γ53 = γ13. By comparing equations (51)
with equations (47), one can also see that the AV and
OBE predictions for the linear susceptibilities again coin-
cide provided that the phenomenological decay rates ΓAV

i
are appropriately interpreted, i.e.,

ΓAV
2 ↔ Γ2 + γ12, (52a)

ΓAV
1 ↔ γ13, (52b)

ΓAV
4 ↔ Γ4 + γ54, (52c)

ΓAV
5 ↔ γ53. (52d)

This shows again that the intuitive interpretation of the
phenomenological decay rates ΓAV

i as spontaneous emis-
sion total decay rates for the excited states, and as dephas-
ing rates in the case of ground state sublevels, is essentially
correct.

We then consider the numerical solution of the OBE
and we compare it with the analytical treatment based on
the AV approach. In Figures 11–13 we compare the analyt-
ical solutions of equations (47) and (48) with the numer-
ical solution of the complete set of Bloch equations given
in Appendix B. Figure 11 shows the linear susceptibili-
ties and refers to a perfectly symmetric situation between
probe and trigger. As a consequence, the probe and trigger
linear susceptibilities as a function of the respective detun-
ings δ1 and δ3 are two indistinguishable curves. In such a
case, group velocity matching is automatically guaranteed
whenever µ32 = µ34. Figure 12 shows the cross-Kerr sus-
ceptibilities again in a perfectly symmetric situation be-
tween probe and trigger so that their plots as a function
of the respective detunings δ1 and δ3 exactly coincide. Fi-
nally Figure 13 shows the self-Kerr susceptibilities again in
a perfectly symmetric situation between probe and trig-
ger. As a consequence their plots versus the respective
detunings δ1 and δ3 exactly coincide.

3.3 Group velocity matching

As we have seen in Section 2.4, the condition of group ve-
locity matching is of fundamental importance for achiev-
ing a large cross-phase modulation between probe and
trigger fields. It is evident from the inherent symmetry of
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Fig. 11. Comparison of the numerical solution (dotted line)
of the OBE with the analytical prediction of equations (47)
(full line) for the real part (above) and imaginary part (below)
of both probe and trigger linear susceptibilities versus their
respective normalized probe detunings δ1/Γ and δ3/Γ . Probe
and trigger susceptibilities exactly overlap because we consider
the perfectly symmetric situation Γ AV

2 = Γ2 = Γ AV
4 = Γ4 =

Γ = 2π×6 MHz, Ω1 = Ω3 = 0.08Γ , Ω2 = Ω4 = Γ , δ2 = δ4 = 0,
∀i, j γij = Γ AV

1 = Γ AV
5 = 10−4Γ , µ32 = µ34, which guarantees

perfect group velocity matching.
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Fig. 12. Comparison of the numerical solution (dotted line)
of the OBE with the analytical prediction of equations (48c,
48d) (full line) for the real part (above) and imaginary part
(below) of both probe and trigger cross-Kerr susceptibilities
versus their respective normalized probe detunings δ1/Γ and
δ3/Γ . Probe and trigger susceptibilities exactly overlap because
we consider a perfectly symmetric situation: Γ AV

2 = Γ2 =
Γ AV

4 = Γ4 = Γ = 2π × 6 MHz, Ω2 = Ω4 = Γ , δ2 = δ4 = 0,
∀i, j γij = Γ AV

1 = Γ AV
5 = 10−4Γ ; moreover we have chosen

Ω1 = 0.002Γ , Ω3 = 0.08Γ in the case of the χ
(3,ck)
P plot, and

vice versa Ω3 = 0.002Γ , Ω1 = 0.08Γ in the case of the χ
(3,ck)
T

plot, in order to reduce as much as possible the influence of
the self-Kerr susceptibilities.
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Fig. 13. Comparison of the numerical solution (dotted line) of
the OBE with the analytical prediction of equations (48a, 48b)
(full line) for the real part (above) and imaginary part (below)
of both probe and trigger self-Kerr susceptibilities versus their
respective normalized probe detunings δ1/Γ and δ3/Γ . Probe
and trigger susceptibilities exactly overlap because we consider
a perfectly symmetric situation: Γ AV

2 = Γ2 = Γ AV
4 = Γ4 =

Γ = 2π × 6 MHz, Ω2 = Ω4 = 2Γ , δ2 = δ4 = 0, ∀i, j γij =
Γ AV

1 = Γ AV
5 = 10−4Γ ; moreover we have chosen Ω1 = 0.4Γ ,

Ω3 = 0.004Γ in the case of the χ
(3,sk)
P plot, and vice versa

Ω3 = 0.4Γ , Ω1 = 0.004Γ in the case of the χ
(3,sk)
T plot, in

order to reduce as much as possible the influence of the cross-
Kerr susceptibilities.

the present scheme that the condition of equal probe and
trigger group velocities is automatically achieved when
the corresponding parameters are equal i.e., µ32 = µ34,
δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4, γ54 = γ12 and
γ53 = γ13, ω1 � ω3. This is the main advantage of the
symmetric M scheme over the asymmetric one. As we have
seen above, the group velocity of a pulse is given by

vi
g =

c

1 + ni
g

, i = P, T, (53)

where the group index ni
g is given by equation (28).

The contribution of the nonlinear susceptibilities to vg is
negligible with respect to that of the linear one, which
is nonzero for both probe and trigger in this case (see
Eqs. (46)). Therefore, approximating χ with the linear
contribution χ(1) and inserting equations (47) into the def-
inition (28), one gets the following expressions for the two
group indices

nP
g =

N |µ32|2
2V �ε0

Re

{
d1

d1d2 − |Ω2|2 +
ω1

(
d2
1 + |Ω2|2

)

(d1d2 − |Ω2|2)2
}
,

(54a)

nT
g =

N |µ34|2
2V �ε0

Re

{
d5

d5d4 − |Ω4|2 +
ω3

(
d2
5 + |Ω4|2

)

(d5d4 − |Ω4|2)2
}
,

(54b)
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Fig. 14. Group velocity of the probe and trigger pulses ver-
sus the normalized detunings δ1/Γ = δ3/Γ . Lines denote the
analytical predictions of equations (53) and (54) (the full line
refers to the probe and the dashed line to the trigger). Cir-
cles and dots refer to the numerical solution of the OBE for
the probe and trigger group velocity, respectively. Parameters
correspond to the perfectly symmetric situation considered in
Figure 11, that is, Γ AV

2 = Γ2 = Γ AV
4 = Γ4 = Γ = 2π×6 MHz,

Ω1 = Ω3 = 0.08Γ , Ω2 = Ω4 = Γ , δ2 = δ4 = 0, ∀i, j
γij = Γ AV

1 = Γ AV
5 = 10−4Γ , and we have chosen µ32 = µ34 =

10−29 Cm, and N/V = 3.0 × 1013 cm−3. Due to symmetry,
one has perfect group velocity matching within a large interval
of values for the detunings.

where we have used the definitions of equations (42) for
dj , j = 1, 2, 4, 5. The symmetry between probe and trig-
ger discussed above is evident also in these expressions.
equations (53) and (54) are now compared with the cor-
responding ones obtained from the integration of the full
set of Bloch equations of Appendix B. The comparison is
shown in Figure 14, which refers to the completely sym-
metric situation between probe and trigger defined above
and therefore shows exact group velocity matching for all
values of the detunings δ1 = δ3. Figure 14 shows an excel-
lent agreement between analytical and numerical results.
The only points in which the two curves do not coincide
exactly are when the detunings match the Rabi frequen-
cies of the two pumping field. In fact in this conditions
the fields are in resonance with a single atomic transition
and the atoms are pumped to the excited levels. The other
points that determine the disagreement are in the vicinity
of the peaks. In fact in these regions the derivatives are
small, because of the change in slope of the real part of the
susceptibilities. Hence, the group index of equations (54)
is small, and the group velocity jumps near c.

In some cases, the perfectly symmetric conditions
guaranteeing group velocity matching, i.e., µ32 = µ34,
δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4, γ54 = γ12 and
γ53 = γ13, are difficult to realize in practice. In fact,
sometimes it may be convenient to use transitions with
different Clebsch-Gordan coefficients, yielding therefore a
significant discrepancy between µ32 and µ34. The other
symmetry conditions above are less problematic because
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detunings and Rabi frequencies can always be made equal
by the experimenter, and moreover decay and dephasing
rates, even though not perfectly equal, are often compa-
rable to each other. Just to give an example, one could
implement the symmetric M scheme of Figure 10 by us-
ing the D1 and D2 line of the 87Rb spectrum. The Zeeman
sublevels |5P1/2 F = 1,m = 0〉 and |5P3/2 F = 1,m = 0〉
could be chosen as levels |2〉 and |4〉, respectively, while
the Zeeman sublevels |5S1/2 F = 1,m = −1〉, |5S1/2 F =
2,m = 1〉 and |5P1/2 F = 1,m = 1〉 could chosen as levels
|1〉, |3〉 and |5〉, respectively (see also Ref. [14] for a simi-
lar choice). For these levels the atomic transitions related
to the probe and trigger have dipole moment matrix ele-
ments µ32, µ34 differing by a factor

√
10, violating there-

fore the symmetry condition. It is evident however that
this slight asymmetry can be compensated (so that group
velocity matching can be still achieved in a restricted but
still useful range of detunings) by properly adjusting the
Rabi frequencies of the tuner field Ω4 and of the coupling
field Ω2, which will be no more equal. In fact, by imposing
group velocity matching at the center of the transparency
window, i.e., for δ12 = δ34 = 0, we derive the condition

Ω2 = αΩ4, (55)

where the correction factor α is given by

α =

√
|µ32|2
|µ34|2

ω1

ω3
. (56)

As shown in Figure 15, if the adjustment condition of
equations (55) and (56) is taken into account, one still gets
equal probe and trigger group velocities in the case of the
87Rb five–level scheme specified above, at least within the
entire EIT window.

Finally, we note also that the problem with the pulse
propagation, present in the asymmetric arrangement (cf.
Sect. 2.5) is absent in the symmetric arrangement. This
is because the dispersion, and the related group velocity
reduction have its origin in the linear part of the suscepti-
bility for both, probe and trigger pulses. Hence there is no
apparent singularity in the trigger group velocity, which
in asymmetric case stemmed from the nonlinear origin of
trigger dispersion.

4 Conclusions

We have studied a five-level atomic system in two different
but related M -configurations. We focused on the nonlin-
ear properties of the system and specifically on the condi-
tions for the optimization of the cross-phase modulation
between two weak fields of interest, which we have named
probe and trigger fields. Both systems have been stud-
ied from a semiclassical point of view, i.e., by describing
all the fields in terms of their Rabi frequencies. We have
seen that both linear and nonlinear properties are well
described by an approach based on amplitude variables,
which has been shown to reproduce well the numerical so-
lution of the exact optical Bloch equations describing the
system.
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Fig. 15. Group velocity of the probe and trigger pulses versus
the normalized detunings δ1/Γ = δ3/Γ . Full lines denote the
analytical predictions of equations (53) and (54) (the thick line
refers to the probe and the thin line to the trigger). Circles and
dots refer to the numerical solution of the OBE for the probe
and trigger group velocity, respectively. Parameters correspond
to the five–level scheme derived from the D1 and D2 lines of
the 87Rb spectrum described in the text, Γ AV

2 = Γ2 � 36 MHz,
Γ AV

4 = Γ4 � 38 MHz, µ32 = 1.27 × 10−29 Cm, µ34 = 5.7 ×
10−30 Cm, Ω4 = Γ , Ω2 = 2.22Γ , Ω1 = Ω3 = 0.08Γ , δ2 =
δ4 = 0, ∀i, j γij = Γ AV

1 = Γ AV
5 = 10−4Γ , N/V = 3.0 ×

1013 cm−3. The asymmetry between the two dipole moment
matrix elements has been compensated by adjusting the value
of Ω2. In this way group velocity matching is achieved within
the entire EIT window.

Both the asymmetric and the symmetric M scheme are
able to provide a giant cross-Kerr modulation, which may
be useful for many applications. Both M schemes can be
seen as a “duplication” of the usual three-level Λ scheme
at the basis of EIT, one for the probe and one for the trig-
ger fields. In the asymmetric scheme, only the probe drives
a significantly populated transition and a large cross-Kerr
effect is obtained when either the probe or the trigger
is slightly detuned from the two-photon resonance condi-
tion. The corresponding nonlinear phase shift, yielding for
example the conditional phase shift of equation (1) of a
quantum phase gate for photonic qubits, can become very
large, especially when the probe and trigger group veloci-
ties, slowed down by EIT, become equal. In the asymmet-
ric scheme, this group velocity matching can be achieved
by properly adjusting the detuning and the intensity of
the control field of the trigger Λ system. In the symmetric
M scheme, the atomic population is equally shared by the
probe and trigger transitions. Adjusting the correspond-
ing parameters (Rabi frequencies, detunings) so that the
two Λ systems become identical, probe and trigger ex-
perience the same interaction with the atomic medium
and group velocity matching is achieved automatically.
In this case a significant nonlinear cross-phase modula-
tion is achieved only if both Λ schemes are slightly and
equally detuned from two-photon resonance, so to remain
still within the transparency window. In fact, due to EIT,
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the susceptibility vanishes at all orders at the exact two-
photon resonance condition.
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Appendix A: Optical Bloch equations –
asymmetric case

From equations (7) and (19), and using the definitions of
equations (20–22), one gets the following set of equations
for the atomic populations σii

σ̇11 =iΩ1σ21 − iΩ�
1σ12 + Γ41σ44 + Γ21σ22, (A.1a)

σ̇22 = − iΩ1σ21 + iΩ�
1σ12 − iΩ2σ23 + iΩ�

2σ32 − Γ2σ22,
(A.1b)

σ̇33 =iΩ3σ43 − iΩ�
3σ34 + iΩ2σ23 − iΩ�

2σ32 + Γ43σ44

+ Γ23σ22, (A.1c)
σ̇44 =iΩ�

3σ34 − iΩ3σ43 − iΩ4σ45 + iΩ�
4σ54 − Γ4σ44,

(A.1d)
σ̇55 =iΩ4σ45 − iΩ�

4σ54 + Γ25σ22 + Γ45σ44, (A.1e)

and the following set of equations for the atomic coher-
ences σij , i = j,

σ̇12 = − iδ1σ12 + iΩ1(σ22 − σ11) − iΩ2σ13 − Γ2 + γ12

2
σ12,

(A.2a)

σ̇13 = − iδ12σ13 + iΩ1σ23 − iΩ�
3σ14 − iΩ�

2σ12 − γ13

2
σ13,

(A.2b)

σ̇14 = − iδ13σ14+iΩ1σ24−iΩ3σ13−iΩ4σ15− γ14 + Γ4

2
σ14,

(A.2c)

σ̇15 = − iδ14σ15 + iΩ1σ25 − iΩ�
4σ14 − γ15

2
σ15, (A.2d)

σ̇23 =iδ2σ23 + iΩ�
1σ13 − iΩ�

3σ24 + iΩ�
2(σ33 − σ22)

− Γ2 + γ23

2
σ23, (A.2e)

σ̇24 =iδ23σ24 − iΩ3σ23 − iΩ4σ25 + iΩ�
2σ34 + iΩ�

1σ14

− Γ2 + Γ4 + γ24

2
σ24, (A.2f)

σ̇25 =iδ24σ25 + iΩ�
1σ15 + iΩ�

2σ35 − iΩ�
4σ24

− Γ2 + γ25

2
σ25, (A.2g)

σ̇34 = − iδ3σ34 + iΩ3(σ44 − σ33) + iΩ2σ24 − iΩ4σ35

− Γ4 + γ34

2
σ23, (A.2h)

σ̇35 = − iδ34σ35 + iΩ3σ45 + iΩ2σ25 − iΩ�
4σ34 − γ35

2
σ35,

(A.2i)

σ̇45 = iδ4σ45 + iΩ�
3σ35 + iΩ�

4(σ55 − σ44) − Γ4 + γ45

2
σ45,

(A.2j)
where we have also defined the composite detunings δ23 =
δ2 − δ3, δ24 = δ2 − δ3 + δ4, and δ34 = δ3 − δ4.

Appendix B: Optical Bloch equations –
symmetric case

From equations (40) and (19), and using the definitions of
equations (20–22), one gets the following set of equations
for the atomic populations σii

σ̇11 = ıΩ2σ21 − ıΩ�
2σ12 + Γ41σ44 + Γ21σ22, (B.1a)

σ̇22 = ıΩ2σ12 − ıΩ�
2σ21 − ıΩ1σ23 + ıΩ�

1σ32 − Γ2σ22,
(B.1b)

σ̇33 = ıΩ3σ43 − ıΩ�
3σ34 + ıΩ1σ23 − ıΩ�

1σ32 + Γ43σ44

+ Γ23σ2, (B.1c)
σ̇44 = ıΩ�

3σ34 − ıΩ3σ43 − ıΩ4σ45 + ıΩ�
4σ54 − Γ4σ44,

(B.1d)

σ̇55 = ıΩ4σ45 − ıΩ�
4σ54 + Γ45σ44 + Γ25σ22, (B.1e)

while the equations for the coherences are

σ̇12 = − ıδ2σ12 + ıΩ2(σ22 − σ11) − ıΩ1σ13 − Γ2 + γ12

2
σ12,

(B.2a)

σ̇13 = ı(δ1 − δ2)σ13 + ıΩ2σ23 − ıΩ�
3σ14 − ıΩ�

1σ12 − γ13

2
σ13,

(B.2b)
σ̇14 = ı(δ1 − δ2 − δ3)σ14 + ıΩ�

2σ24 − ıΩ3σ13 − ıΩ4σ15

− Γ4 + γ14

2
σ14, (B.2c)

σ̇15 = ı(δ1 − δ2 − δ3 + δ4)σ15+ıΩ�
2σ25 − ıΩ�

4σ14 − γ15

2
σ15,

(B.2d)
σ̇23 = ıδ1σ23 + ıΩ�

2σ13 − ıΩ�
3σ24 + ıΩ�

1(σ33 − σ22)

− Γ2 + γ23

2
σ23, (B.2e)

σ̇24 = ı(δ1 − δ3)σ24 − ıΩ3σ23 − ıΩ4σ25 + ıΩ�
2σ14 + ıΩ�

1σ34

− Γ2 + Γ4 + γ24

2
σ24, (B.2f)

σ̇25 = ı(δ1 + δ4 − δ3)σ25 + ıΩ2σ15 + ıΩ�
1σ35 − ıΩ�

4σ24

− Γ2 + γ25

2
σ25, (B.2g)

σ̇34 = − ıδ3σ34 + ıΩ1σ24 − ıΩ4σ35 + ıΩ3(σ44 − σ33)

− Γ4 + γ34

2
σ34, (B.2h)

σ̇35 = − ı(δ3− δ4)σ35−ıΩ3σ45+ıΩ1σ25−ıΩ�
4σ34− γ35

2
σ35,

(B.2i)

σ̇45 = ıδ4σ45 + ıΩ�
4(σ55 − σ44) + ıΩ�

3σ35 − Γ4 + γ45

2
σ45.

(B.2j)
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22. C. Ottaviani, S. Rebić, D. Vitali, P. Tombesi, Phys. Rev.

A 73, 010301(R) (2006)
23. E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46

(2001)
24. D.A. Braje, V. Balic, G.Y. Yin, S.E. Harris, Phys. Rev.

A 68, 041801 (2003); D.A. Braje, V. Balic, S. Goda, G.Y.
Yin, S.E. Harris, Phys. Rev. Lett. 93, 183601 (2004)


